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Abstract

Two major uncertainties, dataset bias and adversar-

ial examples, prevail in state-of-the-art AI algorithms with

deep neural networks. In this paper, we present an in-

tuitive explanation of these issues as well as an interpre-

tation of the performance of deep networks in a natural-

image space. The explanation consists of two parts: the

variational-calculus view of machine learning and a hypo-

thetical model of natural-image spaces. Following the ex-

planation, we (1) demonstrate that the values of training

samples differ, (2) provide incremental boosts to the accu-

racy of a CIFAR-10 classifier by introducing an additional

“random-noise” category during training, and (3) allevi-

ate over-fitting thereby enhancing the robustness of a clas-

sifier against adversarial examples by detecting and exclud-

ing illusive training samples that are consistently misclas-

sified. Our overall contribution is therefore twofold. First,

while most existing algorithms treat data equally and have

a strong appetite for more data, we demonstrate in contrast

that an individual datum can sometimes have dispropor-

tionate and counterproductive influence, and that it is not

always better to train neural networks with more data. Next,

we consider more thoughtful strategies by taking into ac-

count the geometric and topological properties of natural-

image spaces to which deep networks are applied.

1. Introduction

Recent years have witnessed the rapid development of

artificial intelligence (AI) and deep learning. However, two

major issues remain and prevent us from establishing ro-

bust real-world applications with current algorithms. One

is dataset bias [1], meaning that a machine-learning algo-

rithm that performs well on one dataset may fail on another.

The other is adversarial examples [2], which shows that

tiny modifications on inputs may lead to incorrect outputs

by deep networks, even though the perturbations are almost

imperceptible by humans. In this paper, we present our un-

derstanding of the behavior of neural networks and explain

the uncertainties with a hypothetical model of natural-image

spaces. Our contributions are as follows:

• We provide a unified explanation for dataset bias and

adversarial examples from the perspective of varia-

tional calculus and properties of natural-image spaces.

• We illustrate that the values of training samples differ.

Training with more samples does not guarantee higher

accuracy, and even random noise can sometimes help

improve the performance of neural-network classifiers.

• We present a hypothetical model for natural-image

spaces, which can potentially guide a network to al-

leviate over-fitting, enhance robustness against adver-

sarial examples, and improve accuracy.

2. Variational-Calculus View of Learning

The goal of the learning scheme is to obtain an approx-

imation of the underlying target fucntion f (·) by optimiz-

ing an objective loss L(·). According to the geometric view

taken in functional analysis, the target function f (·) is an

extremum point, the values of which may be explained as

components of an infinite-dimensional vector indexed by

its domain (i.e., { fx}x∈X). Meanwhile, the objective func-

tion L(·) corresponds to a functional L( f (·)) in the calculus

of variations. One can discretize a functional and obtain an

objective function for learning algorithms.

L( f ) =

∫ 1

0

( f (x) − y(x))2 dx =⇒
1

n

n∑
i=1

(h(xi) − yi)
2 = MSE

The variational-calculus view shows that the training pro-

cess in machine learning is heavily data-dependent because

the output of the objective loss function (i.e., a functional)

depends not only the summand f , but also the interval (i.e.,

the data x). Therefore, deficiencies in data themselves and

data-usage will impact learning-based algorithms. Such de-

ficiencies, however, cannot be mitigated by improving opti-

mizers or network structures for f .

We then introduce the point-function duality of the un-

derlying target function f to emphasize that the training
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Figure 1: Training samples affect the geometry of approx-

imation of f (x) = sign(x − 0.5). Blue: 40,000 from [0.4,

0.6); orange: 20,000 from [0, 0.1) and 20,000 from [0.9, 1).

process is under-constrained. As an optimal point of the

loss functional L( f ), the target function f is unaware of its

actual domain and range. As a function, the topological

properties of its domain and range do matter, especially if

we apply f : X → Y to test inputs. Different from admissi-

ble functions in variational calculus, the approximated tar-

get function sets no restrictions on the value of its inputs and

outputs, and might be biased and locally valid around train-

ing data. As Figure 1 shows, the shape of the learned curves

and boundaries is determined by training data and some-

times cannot be dictated directly by learning algorithms.

3. Models of Natural-image Spaces

As the learning process is heavily data-dependent, we

deem that the characteristics of the input image space are

worth studying. Another motivation for studying the input

space is that neural networks cannot classify even and odd

numbers, which implies that the topological properties mat-

ter. In this work, we address natural-image spaces in a dis-

crete manner. Let Z[l,u] denote the set of integers from l to

u. A natural image I with resolution w × h and d channels

is considered as a point of the Z
w×h×d
[0,255]

-based natural-image

space I
w×h×d. The essence of the discrete set-up is to con-

sider a space for each resolution as a “chart” of the mani-

fold, and these spaces are not necessarily dense. We then

study the properties of natural-image spaces and reveal that

the properties are closely related to data-usage in learning.

3.1. Sparsity and the scale space effect

Natural-image spaces are sparse since the probability

that a random sample in Z
w×h×d
[0,255]

belonging to I
w×h×d is

small. Moreover, they are denser in lower dimensions be-

cause the quantity of valid natural images increases more

slowly than that of possible cases as resolution increases.

These properties are consistent with results that show al-

gorithms for image generation and translation are better at

producing images with lower resolutions. In image classifi-

cation, however, such properties are not addressed properly,

especially when, as is typically the case, a limited number of

categories are provided. Under current settings, classifiers

assume that the underlying target function is well-defined

everywhere and learn to paint the entire input space with a

fixed number of colors. When classifiers eliminate all pos-

sible categories, they have to pick the remaining one as the

final output. Unfortunately, no category for exception ex-

ists. To classify the input space continuously and smoothly,

the decision boundaries are often deformed. As a first step

for handling exceptions, we augment training samples with

an extra random-noise category with the hope that it would

fill in the invalid regions among categories and push the de-

cision boundaries towards the centroid of each cluster. Sup-

pose there are N training samples (x) and M classes. The

improved cross-entropy loss becomes:

L(p(x), x, y) = −

N∑
i=1

w(xi)

M+1∑
c=1

yi
c log pc(xi) (1)

in which yi
c is the binary indicator (0, 1) if class label c is

the correct classification, pc(xi) is the predicted probability

class c, and w(xi) is the weight, all for xi.

3.2. Connectivity

Based on the sparsity property, we infer that two im-

ages belonging to the same category are not always “path-

connected” through adjacent grid points in Z
w×h×d
[0,255]

. At the

micro level, a natural-image space can be regarded as a quo-

tient space Y = X/ ∼ consisting of numerous equivalence

classes of “path-connected” images that can be derived from

each other via non-destructive operations (e.g., using fil-

ters). These equivalence classes, however, are not neces-

sarily connected. One gap exists between a labeled natural-

image space and the one approximated by a neural network,

because the regions classified by the network tend to be con-

nected [3]. We claim that such a gap is one of the key rea-

sons for uncertainties in neural networks. In addition, the

gap is exacerbated by a setting of a fixed yet insufficient

number of categories. The setting reflects a subconscious

assumption in machine learning: algorithms should always

learn and follow the exact concepts (e.g., object classes)

from humans. In fact, they may require multiple classes to

fully comprehend a human-level concept. It is possible that

instances in one dataset are “essentially” different from in-

stances in another, even though they correspond to the same

“biased” concept according to humans. Therefore, to break

the constraints from the limit on number of categories, we

allow more equivalence classes that are linked with a ta-

ble to represent a category. Intuitively, these classes slice

the input space into discontinuous pieces and glue them to-

gether with the table. Similar to equation (1), the improved

cross-entropy function can be expressed as:

L j(p(x), x, y) = −

N∑
i=1

w(xi)

M j(p,x,y)∑
c=1

yi
c log pc(x

i) (2)

in which the number of sub-networks j and equivalence

classes M, as well as weights on training data w(·) will be

determined by algorithms.
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4. Experiments

We present experimental results that support our state-

ments on the impact of training samples and the bene-

fits of utilizing the topological and geometric properties of

natural-image spaces. As classification is the basis for ad-

vanced tasks, we set up controlled image-classification ex-

periments on CIFAR-10 [4]. To measure the location of

samples in the learned space, we assume that the output

probability of a category is negatively correlated with the

distance from the sample to the centroid of that category.

4.1. Impact of Training Samples

A regular training process is terminated at a premature

stage before over-fitting occurs. After training, we catego-

rized the training samples into two super-classes: those that

were correctly classified and those that were misclassified.

Within each super-class, we sorted the samples according

to their maximum probability score, which is denoted by

“confidence” for the correctly classified or “illusiveness”

for the misclassified. From the correctly classified sam-

ples, we selected two subgroups with relatively higher (S hc)

and lower (S lc) confidences. Similarly, two subgroups with

higher (S hi) and lower illusiveness (S li) were selected from

the misclassified. With all subgroups the same size, we then

retrained the network with the selected subgroups to illus-

trate the impact of different training samples. The left half

of Table 1 shows the performance of the classifier after re-

training with subgroups of the original data.

We observe the following: More training samples do not

guarantee a higher accuracy. High-confidence images are

required for higher test accuracy, especially when a limited

number of training samples are provided. Highly illusive

images are misleading when the size of the training set is

small; as the training set expands, however, such adverse

images become valuable and lead to even higher accuracy.

In this sense, the highly illusive images contain higher en-

tropy (more information) than low-illusiveness images af-

ter a certain number of iterations. Classifiers trained with

S hc ∪ S li are determined (smaller σA) and confident (higher

Pc, Pi) regardless of whether they are right or wrong. By

contrast, classifiers trained with S lc ∪ S hi are relatively hes-

itant (larger σA) in that the average probabilities for the

output category (Pc, Pi) are lower; moreover, even if the

prediction is wrong, they still assign a certain probability

on the ground-truth category (Pg). The results demonstrate

that bias can occurs within the same dataset because it is an

intrinsic property of the learning scheme.

4.2. Training with a Random-Noise Class

Adding random-noise samples to training data is the eas-

iest way to change the topology of the input space. To

the best of our knowledge, researchers have never treated

random noise as a collection of independent training sam-

ples containing information that can be directly employed

for training neural networks. We repeated the experiments

in the previous section with an extra category of random

noise as negative training samples. Surprisingly, as shown

in the right half of Table 1, the noise category improves

the test accuracy. The risk of “misclassification as random

noise” vanishes as the number of natural training images

increases. In general, classifiers trained with random noise

tend to be more determinant (higher Pc, Ps, lower σA); sur-

prisingly, for misclassified samples, the probability of the

ground-truth category also increases (higher Pg). Besides

the enhancement, the existence of the unusual samples is

more inspiring, and the samples may not be restricted to

random noise. Such samples used to be considered as “off-

the-manifold” and completely irrelevant to classification.

Our experiment results leave open the possibility of seeking

more hidden samples that may complement data augmenta-

tion, especially when training samples are insufficient.

4.3. Training in the Natural-image Spaces

We can also improve a classifier by slicing the learned

connected regions to match the quotient-space model. Let

us first recognize that a given network has limited, finite

capability of learning the quotient space. Thus, there will

often be training samples that are consistently misclassified

during training, sometimes even with very high confidence.

Henceforth, we will refer to these samples as illusive sam-

ples. Higher-order statistics of the training process, includ-

ing the number of times that a training sample has been

correctly classified, indicate crucial characteristics of the

learned space. The following experiments were conducted

based on the higher-order training statistics.

We retrained the network without illusive samples. As

Figure 2 shows, despite a slight drop in test accuracy during

early epochs, over-fitting is alleviated. If we further exclude

illusive test samples, over-fitting is even more weakened. A

correlation seems to exist between over-fitting and the illu-

sive samples that cannot be mapped to correct equivalence

classes. Moreover, the rationale behind dataset bias and

over-fitting may be similar; over-fitting occurs at equiva-

lence classes that are already observed whereas dataset bias

happens at unseen locations in the input space. Another

consequence of removing illusive training samples is that

fewer uncertain regions are required to connect separated

equivalence classes, which could potentially enhance the

robustness against adversarial examples. We retrained the

CIFAR-10 tutorial in CleverHans [5] and obtained results

in Table 2 as expected.

In our last proof-of-concept, we computed the cumula-

tive confusion matrix (CCM) during training. If an illusive

training sample is consistently misclassified and appears to

be top confusion (i.e., large values in the CCM), we will
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Table 1: 50-time average performance of the classifier retrained with subgroups of training data. S
p
c : the top p of training

samples selected with criteria c. The number of uniformly distributed noise samples is 5× the number of legitimate samples.

Evaluation metrics are average test accuracy (A), standard deviation of test accuracy (σA), average confidence of correctly

classified samples (Pc), average illusiveness of misclassified samples (Pi), average probability of the ground-truth category

for misclassified samples (Pg), and average number of test samples that are misclassified as “noise” (N).

Training set A σA Pc Pi Pg Training set A σA Pc Pi Pg N

S .25
lc
∪ S .25

li
27.12% 2.40% 26.56% 22.91% 14.65% S .25

lc
∪ S .25

li
∪ noise 30.82% 2.11% 28.31% 24.14% 15.43% 2.1

S .25
lc
∪ S .25

hi
19.26% 0.92% 24.68% 22.86% 13.67% S .25

lc
∪ S .25

hi
∪ noise 21.32% 0.91% 25.27% 23.40% 14.30% 1.08

S .25
hc
∪ S .25

li
53.61% 1.23% 79.67% 58.00% 12.73% S .25

hc
∪ S .25

li
∪ noise 55.27% 0.86% 79.24% 58.60% 12.86% 5.36

S .25
hc
∪ S .25

hi
51.49% 1.29% 66.57% 44.77% 14.57% S .25

hc
∪ S .25

hi
∪ noise 53.26% 1.06% 67.22% 44.81% 14.87% 2.78

S .50
lc
∪ S .50

li
52.16% 1.58% 45.73% 36.39% 18.61% S .50

lc
∪ S .50

li
∪ noise 53.11% 1.36% 46.70% 37.26% 19.23% 0.9

S .50
lc
∪ S .50

hi
41.07% 1.18% 35.11% 30.86% 17.99% S .50

lc
∪ S .50

hi
∪ noise 40.82% 1.10% 35.05% 31.23% 18.55% 0.68

S .50
hc
∪ S .50

li
65.78% 0.58% 88.08% 70.23% 11.41% S .50

hc
∪ S .50

li
∪ noise 66.37% 0.53% 88.56% 70.03% 11.61% 1.12

S .50
hc
∪ S .50

hi
60.48% 0.67% 75.62% 50.50% 15.92% S .50

hc
∪ S .50

hi
∪ noise 65.13% 0.65% 76.10% 50.47% 16.16% 0.72

S .75
lc
∪ S .75

li
68.76% 1.16% 74.25% 52.34% 18.36% S .75

lc
∪ S .75

li
∪ noise 70.03% 0.81% 73.88% 53.26% 18.42% 0.14

S .75
lc
∪ S .75

hi
60.55% 1.31% 58.33% 43.00% 20.33% S .75

lc
∪ S .75

hi
∪ noise 61.95% 1.38% 54.95% 43.80% 20.69% 0.50

S .75
hc
∪ S .75

ls
70.81% 0.31% 92.67% 76.09% 10.28% S .75

hc
∪ S .75

li
∪ noise 71.05% 0.54% 92.43% 75.64% 10.54% 0.22

S .75
hc
∪ S .75

hi
70.85% 0.47% 80.45% 55.76% 16.24% S .75

hc
∪ S .75

hi
∪ noise 71.42% 0.55% 80.94% 55.75% 16.48% 0.34

S 1 (all) 74.67% 0.46% 83.22% 59.39% 16.49% S 1 (all) ∪ noise 75.29% 0.36% 83.53% 58.61% 16.85% 0.14

Figure 2: Training without consistently misclassified sam-

ples help prevent over-fitting.

Table 2: Test accuracy (in %) from CleverHans. n: number

of training epochs; ǫ: max-norm eps; Aleg/Aadv: average

test accuracy (20 runs) on legitimate/adversarial samples;

A∗
leg
/A∗

adv
: average accuracy w/o illusive training samples.

n ǫ Aleg A∗
leg

Aadv A∗
adv

n ǫ Aleg A∗
leg

Aadv A∗
adv

6 .3 78.90 78.88 10.84 11.74 50 .3 90.39 88.81 10.37 10.40

6 .1 78.73 78.22 9.34 11.31 50 .1 90.51 88.77 10.75 14.35

6 .05 78.98 78.21 11.16 13.87 50 .05 90.53 88.91 13.28 21.88

6 .01 78.84 78.73 45.47 48.39 50 .01 90.33 88.90 39.03 48.50

relabel the sample with a new category. According to the

quotient-space model, the network successfully learns that

the illusive sample belongs to a particular equivalence class,

but fails to connect the equivalence class with others in the

same category due to limited capability of approximating

discontinuous functions. Thus, we sliced the equivalence

class with a new label, trained a separate classifier on those

illusive samples, and glued the new equivalence class to ex-

isting ones with a look-up table. When illusiveness of test

samples is available, we can select which classifier to apply

at test time. According to test results, the proposed strategy

can potentially increase test accuracy by 3% within current

budget. In addition, we can train networks with larger learn-

ing rate because over-fitting is weakened by following the

input space learned by the network.

5. Discussion

We hope the paper will stimulate discussion in the com-

munity regarding the intrinsic properties of the input space

to which deep networks are applied. Open problems include

the entropy of training samples, features of the decision

boundaries, equivalence relation among images, and better

representation of the image space. Understanding the topo-

logical and geometric properties of natural-image spaces

with a more rigorous model will help us interpret the perfor-

mance of state-of-the-art deep neural networks. Moreover,

it may provide a more comprehensive understanding of the

theoretical basis for deep neural networks. In practice, we

may enhance the performance of neural networks by im-

proving the quality of training samples or altering how we

use data.
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